Reusability
By Charles Brewer

Abstract

The Shareable Object Reference Model (SCORM) conceptual starting point “ilities” as defined in the ADL SCORM Overview manual is exactly as the ADL document titles them, a “Conceptual Starting Point for SCORM.” Unfortunately, as known by most, there are some missing concepts and guidelines to support some of these high level requirements (Accessibility, Adaptability, Affordability, Durability, Interoperability and Reusability).
Problem

The most critical SCORM “ilities” possess a natural reliance on one another. For example, without interoperability, reusability would be extremely difficult and without interoperability and reusability, affordability would not exist. I believe many would agree that interoperability is the foundation for all of the concepts for which the ADL has laid a superb foundation. Following interoperability is reusability, which the current specification doesn’t functionally support. Although SCORM has a good representation of its content and structures as used in a given package, the specification treats each SCO as a “Black Box” in respect to the content in the SCO. This creates a reusability problem since most SCORM content possesses its own interface, its own pedagogy, and its SCO granularity is seldom consistent. This article will discuss concepts and make recommendations to overcome these problems and extend the SCORM specification to make reusability at the SCO level, or lower, a reality.

Use Cases

· Extend the specification to separate SCO UI components from SCO content.
· Develop a standard interface for SCO content to control SCO UI components.

· Extend the specification to define reusable components.
· Extend the specification to allow programmatic extraction of smaller SCOs from larger SCOs.

Stakeholders
Stakeholders of this recommendation would include any entity that desires a higher level of reuse with interactive training.

Concepts

The author understands the concepts outlined in this document may be too extreme for implementation as SCORM 2.0 requirements. However, implementing these concepts as a higher level of SCORM 2.0 certification may be a consideration. The driving force behind these concepts is the highly expressed desire to share content between different vendors at the click of a button. Currently, millions of dollars are spent every year in taking content out of one format and inserting it into another. These concepts do not focus on content that is already developed, but for content that is to be developed in the future.

First, the current manifest specification enables us to programmatically copy a SCO from one package and insert it into another. However, there are a couple problems with this process in the light of reusability. A conflict of filenames, file location, and function names could exist, but this could be overcome by programmatically manipulating file and function names and searching for and modifying their references. More importantly, the SCO UI may be in contrast dramatically with the courseware UI of its new package. So, if we are to copy content from one package and insert it into another for reuse, we will need to leave the SCO UI components behind. This drives the requirement for isolating the SCO Content from the SCO UI.
Secondly, content typically has methods of controlling the SCO UI based on user actions. For example, the Next button is commonly disabled until the user performs an action or answers a question. This concept will require a standardized interface between the content and the UI. Note this is not a standard UI. The look and design of the UI is completely free from standardization. The requirement calls for the need to standardize the methods to control the UI components from within the content. The UI itself could be Server Script, DHTML, Flash, or any combination of the items so long as it can interfaced with ECMA JavaScript. UI component function names will need to be standardized, but the script inside the function may be specific for the interface removing any interface restrictions.
The previous two paragraphs have moved from the notion of copying a SCO from one package and inserting it into another package to the notion of stripping out the content from its UI and inserting it into another UI. Hence the SCO content is being reused in a second package with a new UI.

The third and most difficult item we need to address is content behavior. Content behavior and items that support the content behavior must be identified so they may be transferred with and maintain their relationship with the content. Items such as Flash animations that may communicate with, or rely upon, JavaScript inside of its container (typically a web page) must be identified as content behavioral dependencies so they may be moved into the new UI with the content. This becomes a little more difficult when content is comprised of ten separate DHTML web pages that all work together to create a fault insertion scenario or troubleshooting exercise, but if the correct items are identified, then transporting them into a new UI may be accomplished programmatically.
The next concept – Reusable Components and Extracting a SCO from a larger SCO – should be separated from the first three concepts mentioned above. If content were able to achieve the goals of the first three concepts, then it perhaps would be classified at a specified SCORM-Reusable level. The concept of reusable components extends the above concepts to smaller portions of a SCO either to be used as a SCO, or inside of another SCO.

Content consumers often demand what has been termed as the “Biggy SCO.” They want the customized menu systems and smooth transition from one topic to the next. Unfortunately, many learning management systems have long delays between closing one SCO, reporting all the interactions and completion logic, and opening up a new SCO. These delays can be excessive when bandwidth is a factor and the delays can deter the learner’s positive experience. Once the previously-discussed items of this document are identified and transfer of content from one UI to another is achievable, it only makes sense to extend this functionality to extract smaller portions of a SCO, either as a new SCO or a component to be used in another SCO.
In addition to identifying the portions of a SCO that are extractable and reusable, this concept will require a couple of other definitions to become a reality. Extracting a portion of content to use as a SCO (either with the same or different UI) will require standardization of a functional menu (inside the SCO) and a standard summary page where the SCO reports scores, completion status, success status, etc. A specification for the identification of special pages that handle runtime components for the new SCO would need defined. Menus inside the Menu pages (since we may only desire one or two menu items from seven or eight) will need to be treated in the same fashion as the UI. A standard interface for the menu items will need to be developed, but the Menu UI itself will be independent of the interface. Just as a standard interface will need to be developed in order for content to control the UI, a standard interface will need to be developed for the menu items and completion logic pages.
The next issue we will address is media files. Quite simply, if media files are to be transferable between different UIs, then graphics and flash animations will need to have transparent backgrounds. An opaque background set for one UI may not look proper in another UI.

The last concept we will discuss (which is the hardest issue) is screen resolution and screen layout. Courseware designed in a screen size of 1280 x 1024 pixels obviously will not mold into a UI that is designed at 1024 x 768 without costly artistic rework. Unless all of the elements in the courseware have been positioned and sized on the screen with a percent unit of measure, this is a tough issue. Categorization of courseware screen resolution and layouts may alleviate this issue. Not only will the content need to be categorized by screen resolution, but the UI will need to be categorized since these are really two different entities. UI categories could be defined as 1024 only, or 1024 and lower. A 1024 x 768 UI could be designed to display 800 x 600 content in the center of its content area. Each categorization will additionally need to define the actual area of the screen designated for the content. The distinctions of absolute or relative positioning and screen layouts would need to be handled by the UI.
Concepts Summary
The concepts discussed above are unlikely to be accepted by content vendors upon initial exposure. In order to capture the content (without the UI), their tool sets and processes currently in use will need to be modified. Getting inside the SCO (which has essentially been a black box in the past) may be perceived by content vendors as imposing on their unique ability, which gives them the competitive edge. However, the concepts discussed here have not imposed on any content functionality or unique methods of displaying or delivering content. The concepts in this document impose an extreme change in the way most content developers develop courseware. However, if the desire to share content between vendors without reworking the content is desired, then I believe these concepts are the starting point to achieve this significant milestone.

Standard UI Implementation
Base elements required for implementing the standard UI concepts include:

1. A standard set of interface button identifiers.

2. Standard event handler names.

3. Standard methods for altering the state of each button.

4. Standard “class” attributes for each UI control to simplify styling using CSS or XSLT.
Standard UI Component Example Table

	UI Component
	Identifier/Name
	Class Name
	Typical Use
	Event Handler

	Next Button
	bNext
	cBtnNext
	Traverse the learner to the next page of content within the SCO.
	bNext_click()

	Back Button
	bBack
	cBtnBack
	Return the learner to the previous page of content.
	bBack_click()

	Menu Button
	bMenu
	cBtnMenu
	Return the learner to the previous Menu page in the hierarchy of the SCO.
	bMenu_click()

	Help Button
	bHelp
	cBtnHelp
	Present learner help.
	bHelp_click()

	Glossary Button
	bGlossary
	cBtnGlossary
	Present a Glossary to the learner.
	bGlossary_click()

	Pubs Button
	bPubs
	cBtnPubs
	Present a selection of publications to open.
	bPubs_click()

	Comment Button
	bComment
	cBtnComment
	Provide a dialog for the learner to submit comments to an LMS.
	bComment_click()

	Browse Button
	bBrowse
	cBtnBrowse
	Provide a Browse menu for the content (within the SCO).
	bBrowse_click()

	Audio Button
	bAudio
	cBtnAudio
	Enable audio to be switched on/off.
	bAudio_click()

	Volume Control
	bVolume
	cBtnVolume
	Adjust the volume of the courseware audio.
	bVolume_click()

	Refresh Button
	bRefresh
	cBtnRefresh
	Refresh the current Page.
	bRefresh_click()

	Quit Button
	bQuit
	cBtnQuit
	Closes the courseware.
	bQuit_click()

	Play Button
	bPlay
	cBtnPlay
	Begins an Animation.
	bPlay_click()

	Pause Button
	bPause
	cBtnPause
	Pauses and animation.
	bPause_click()

	Stop Button
	bStop
	cBtnStop
	Stops and Animation.
	bStop_click()

	Rewind Button
	bRewind
	cBtnRewind
	Rewinds an Animation.
	bRewind_click()

	Print Button
	bPrint
	cBtnPront
	Prints the current screen.
	bPrint_click()

	Accessibility
	bAccessibiliy
	cBtnAccessibility
	Toggles 508 Accessibility features on and off.
	bAccessibiliy_click()

	Email
	bEmail
	cBtnEmail
	Opens an Email Message with the SCO Title, page Number and Screen Title in the subject line and specified users in the To: field.
	bEmail_click()

Defining the specification for the UI elements as XML gives one the ability to style the UI directly from the XML specification using XSLT. Ideally, location and file names of the UI script files would need to be standardized so content would know how to link the files.
Standard ECMA sample scripts for UI element control
[image: image1.png]V//UT Methods
function dizableControl (sControllisne)

¢

1€ (document . gecBLenent sByllane (sControlliane) . Length:

¢

1)

document . getELenentsByliane (sControlliane] [0] . disable

function enableControl(sControlliane)

¢

1€ (document . gecBLenent sByllane (sControlliane) . Length:

¢

1)

document . getELenentsByliane (sControlliane] [0] . disable

alse;

funceion hideControl {sControlliane)
¢
1€ (document . gecELenentsByliane (sControlliane] . Lenge

¢

1)

document . gerELenentsByNane (sControlNane] [0] . style. visibilicy="hidden’ ;

funceion showControl (sControlliane)
¢
1€ (document . gecELenentsByliane (sControlliane] . Lenge

¢

1)

document. gerELenentsByNane (sControlNane] [0] . style. visibilicy="visible’;

Standard ECMA sample scripts for UI

The UI scripts would be part of the content behavioral support documents.

[image: image2.png]//Coursewars methods
funceion bliexe_click()
¢

IiTnsere Coursevare

funceion bBack_click()
¢

IiTnsere Coursevare

funceion bfemu_click()
¢

IiTnsere Coursevare

funceion bHelp_click()
¢

IiTnsere Coursevare

specitic

specitic

specitic

specitic

funcrionality

funcrionality

funcrionality

funcrionality

sor

sor

sor

sor

he

he

he

he

—

ek

—

e1p

buton

buton

buton

buton

Additional event types may also be defined (i.e., mouseover, mouseout).
Content Transfer
Ideally one utility would be used with a routine to transfer content out of one package into another. The routine would need a few sets of distinct elements defined each manifest file (the manifest the content is coming from and the manifest the content is being transferred to).
The current SCORM specification already implements the first set of elements, in that every file (and its relative path to the manifest) required to support the content would need defined. Within the manifest at the SCO level, a set of required elements would need to define content UI support requirements. These elements would define specific compatibility requirements for the content, such as resolution and layout. Additionally, the routine would require a set of elements at the manifest level to define UI compatibility. These two sets of elements could be used in the transfer routine to test for compatibility issues (if any) between the transferring content and the receiving UI and could inform the user of any manual content modifications that may need to occur or give the user an opportunity to abandon the transfer.
Additionally, the content transfer routine would need to test for file name conflicts. If the transferring content contains support files with the same location and filename (but is not the same file) as a SCO from a different package, then this would require manual intervention to resolve the issue.
Once the content is determined compatible, transfer of the content could be accomplished by reading the selected SCO file elements (and dependency files) href attributes to locate and copy the files from one location to the other. Unzip and zip routines would need to be built into the routine to work with PIF files and create the location for each packages files.

The concept of transferring a portion of a SCO from one package to another to be used as a SCO will require a set of elements that define (at a minimum) an introduction page and a summary page. These items would be defined within the UI elements of the receiving manifest. Ideally, the utility used to transfer content would include features to read this information and generate menus and summary pages within the UI to allow users to implement basic SCORM RTE calls required for the new SCO.
Unfortunately, in the real world these concepts are not unproblematic. When manual content modification is needed because of compatibility issues, a set of elements that define manual modification requirements would be ideal. Many content vendors do not desire to share their unique tools/abilities with other vendors since it gives them the competitive edge. Other vendors give the customer full rights to the tools for revision and maintenance and some others have made their toolsets open source. Regardless of the scenario, a set of elements that define the toolsets required for manual modification of the content, and the availability of those tools, should be defined to assist in decisions when compatibility issues arise.
Summary

The ADL Plugfest conferences were extremely successful in ironing out functional interoperability issues between LMS and content vendors to reduce the cost and restrictions of content development. We believe a functional specification to support content reusability is the next logical milestone that SCORM should achieve that would extend these cost savings tremendously. We appreciate the opportunity that LETSI has given us to share these concepts.
